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Abstract. We derive a realistic microscopic model for doped colossal magnetoresistance manganites, which
includes the dynamics of charge, spin, orbital and lattice degrees of freedom on a quantum mechanical level.
The model respects the SU(2) spin symmetry and the full multiplet structure of the manganese ions within
the cubic lattice. Concentrating on the hole doped domain (0 ≤ x ≤ 0.5) we study the influence of the
electron-lattice interaction on spin and orbital correlations by means of exact diagonalisation techniques.
We find that the lattice can cause a considerable suppression of the coupling between spin and orbital
degrees of freedom and show how changes in the magnetic correlations are reflected in dynamic phonon
correlations. In addition, our calculation gives detailed insights into orbital correlations and demonstrates
the possibility of complex orbital states.

PACS. 71.10.-w Theories and models of many-electron systems – 71.38.-k Polarons and electron-phonon
interactions – 75.30.Vn Colossal magnetoresistance

1 Introduction

The observation of the colossal magnetoresistance effect
(CMR) [1–3] in doped manganese oxides with perovskite
structure, R1−xAxMnO3 (R = rare-earth, A = alkaline-
earth metal), moved these materials into the focus of in-
tense research activity [4–6]. It turned out soon that the
complex electronic and magnetic properties of the man-
ganites depend on a close interplay of almost all degrees
of freedom known in solid state physics, namely itinerant
charges, localised spins, orbitals, and lattice vibrations.
On the one hand, the strong Coulomb interaction U and
the Hund’s rule coupling Jh introduce a spin background
and affect the charge mobility via double-exchange [7–9].
On the other hand, the cubic environment of the Mn sites
within the perovskite lattice results in a crystal field split-
ting of Mn-d-orbitals into eg and t2g and gives rise to an
orbital degeneracy in the ground-state of Mn3+ ions. This
orbital degeneracy, in turn, connects the electronic system
to the lattice, making it sensible to Jahn-Teller distortion
and polaronic effects [10].

There are numerous attempts to describe the electronic
(i.e., charge, spin, and orbital) interactions of the mangan-
ites on a microscopic level (see, e.g., Refs. [11–13]). How-
ever, most of these models do not reflect the full multiplet
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structure of the Mn ions caused by the cubic site symme-
try or violate the spin rotational invariance. To our knowl-
edge, Feiner and Olés [14] were the first who derived a con-
sistent spin-orbital model for the undoped compounds. In
the following we extend their derivation to the case of fi-
nite doping and complete the resulting electronic model
with dynamic electron-lattice interactions of Jahn-Teller
and breathing type. Up to now models of similar com-
plexity have only been discussed on the basis of rather ex-
tensive approximations, where mean-field approaches are
probably the most popular. In particular, the lattice was
always treated within the adiabatic approximation which
is questionable in view of the comparable energy scales
of spins and phonons. For a better understanding of this
complex many body system we prefer to consider all inter-
actions on an equal footing. Using exact diagonalisation
techniques we study the ground-state properties of the de-
rived model on a four site cluster.

For the hole doped region (0 ≤ x ≤ 0.5) our calcu-
lations show how the lattice can effectively control the
spin and orbital correlations and the charge mobility. In
the undoped compounds the electron-phonon interaction
suppresses the coupling of spin and orbital degrees of free-
dom and is most effective in determining orbital order. At
doping x = 0.25, where ferromagnetism is stabilised by
the double-exchange mechanism, the coupling to the lat-
tice can cause self-trapping of the charge carriers, which
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Fig. 1. Local electronic structure of Mn-d-electrons in a cubic
environment. Here ∆cf, Jh, and EJT denote the crystal field
splitting, the Hund’s rule coupling, and the Jahn-Teller split-
ting, respectively.

immediately switches the spin order. In turn, this change
is reflected in dynamic lattice correlations, namely the
bond length fluctuation. For the half-doped manganites
we find that the electron-phonon coupling enhances the
susceptibility for charge ordering which is present already
due to the strong Coulomb interaction. In addition, mod-
erate variations in the strength of the electron-lattice cou-
pling trigger pronounced changes in spin and orbital cor-
relations. This relates to the complicated patterns of spin,
charge and orbital ordering observed experimentally for
different manganites at x = 0.5.

2 Microscopic model

2.1 Electronic interactions

The electronic and magnetic properties of the mixed-
valence manganites are governed by the manganese
d-electrons, which are divided into t2g and eg according
to the cubic symmetry within the crystal field. Due to the
large Coulomb and Hund’s rule interactions each of the
three t2g and the two eg levels carries at most one electron
and the spins of several d-electrons are aligned in paral-
lel at every site (see Fig. 1). Starting from the undoped
compounds with only Mn3+ ions doping will remove eg-
electrons. Hence, the local electronic Hilbert space can be
restricted to the large Hund’s rule ionic ground-states of
manganese ions in a cubic crystal field (see Ref. [15]). For
Mn3+ (d4) this corresponds to the spin-2 orbital doublet
5E [t32(

4A2)e],

|θ, 2,m〉 = +
√

(2−m)!
4!(2+m)! (S+)(2+m) c†ε↓c

†
ξ↓c

†
η↓c

†
ζ↓|0〉

|ε, 2,m〉 = −
√

(2−m)!
4!(2+m)! (S+)(2+m) c†θ↓c

†
ξ↓c

†
η↓c

†
ζ↓|0〉 , (1)

and for Mn4+ (d3) to the spin- 3
2 orbital singlet 4A2 [t32],

|a2,
3
2 ,m〉 =

√
( 3
2−m)!

3!( 3
2+m)!

(S+)(
3
2+m) c†ξ↓c

†
η↓c

†
ζ↓|0〉 · (2)

Here the operators c†ασ create spin σ electrons in the eg

(α = θ, ε) or t2g (α = ξ, η, ζ) orbitals and S+ =
∑

α c
†
α↑cα↓

raises the on-site spin. The overlap of neighbouring man-

Fig. 2. Second order virtual excitations contributing to the
model Hamiltonian Hel, equation (5). The shaded region cor-
responds to t2 terms, the other terms are proportional to t2π.
n denotes different nonnegative prefactors of Jh (see Eq. (8)).

ganese d and oxygen p orbitals allows for a tunneling of
the manganese electrons between adjacent sites. Due to
the specific symmetry of the involved orbitals this hop-
ping acquires an anisotropy [16,17],

Ht = −
∑
i,δ,σ

Rδ

[
t c†i,θσci+δ,θσ

+ tπ(c†i,ξσci+δ,ξσ + c†i,ησci+δ,ησ)
]

+ h.c. , (3)

which can be expressed in terms of the spatial rotations

Rx = (Cd
3 )1 , Ry = (Cd

3 )2 = (Cd
3 )−1 , Rz = (Cd

3 )3 = 1

Cd
3 : cθ/ε → − 1

2cθ/ε ±
√

3
2 cε/θ ; cξ/η/ζ → cη/ζ/ξ . (4)

The transfer amplitudes t and tπ of eg and t2g electrons
are small compared to the local energies U and Jh. There-
fore the mobility of the eg electrons depends on the cor-
relations of the spin background formed by the t2g elec-
trons. Their kinetic energy is maximal, if neighbouring
spins are aligned ferromagnetically, which is the essence
of the well known double-exchange interaction [7,8]. Sec-
ond order processes in t and tπ are responsible for nu-
merous superexchange interactions between the localised
spins, which inherit the orbital anisotropy of the hopping.

The electronic part of our model is derived by sec-
ond order degenerate perturbation theory [14], i.e., we
calculated the matrix elements of Ht between the basis
states (1) or (2) and all admissible excited states [15]. In
Figure 2 the spin part of the fifteen different virtual exci-
tations contributing to the superexchange is summarised
graphically. We neglect terms which involve three differ-
ent lattice sites. A compact expression for the resulting
electronic Hamiltonian,

Hel =
∑
i,δ

Rδ(Hz
i,i+δ + h.c.) , (5)
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is obtained by rewriting the orbital and charge degrees of
freedom of the basis states (1) and (2) in terms of new
Fermi operators d†α and projectors Pα,

|θ〉 = d†θ|0〉, |ε〉 = d†ε|0〉, |a2〉 = d†θd
†
ε|0〉,

P θ = nθ(1 − nε), P ε = nε(1 − nθ), P a2 = nεnθ. (6)

Note that these projectors are related to the common
pseudo-spin operators

τz = 1
2σ

z , τx/y = Rx/y(τz) = 1
4 (−σz ∓√

3σx) , (7)

by the equation Rδ(P θ/ε) = 1
2±τδ. Since the amplitude of

the on-site spin is different for the basis states (1) and (2),
it is convenient to represent the spin degree of freedom
by Schwinger bosons a↑ and a↓ which allow for a uni-
form description. Then, the spin operator is defined by
2S = a†µσµνaν , but the amplitude is subject to the con-
straint 2 |S| = a†↑a↑+a†↓a↓ = 4−nθnε. Using this notation
in z-direction the interaction between nearest-neighbour
sites is given by,

see equation (8) above.

The first order in t corresponds to the well known dou-
ble exchange interaction [7–9], which the authors discussed
in detail recently [18]. The second order in t and tπ ap-
pears to be more involved, since the number of admissible
virtual excitations is rather large (see Fig. 2). However, in
all cases it is basically the product of a Heisenberg-type
spin interaction and two orbital projectors. The energies
of the virtual excitations depend, in general, on all three
Racah parameters [15] A, B, and C. Applying the con-
vention of reference [14] we define U and Jh in terms of
d4d4 � d5(4A1)d3 and d4d4 � d5(6A1)d3 excitations. To-
gether with the approximation [19] C ≈ 4B this yields
U = A + 22B and Jh = 6B. Typical estimates for these
energies are U ≈ 6 . . . 9 eV and Jh ≈ 0.6 . . . 0.8 eV [20–23].

2.2 Electron-phonon interaction

Concerning the electron-lattice interaction we concentrate
on the local environment of the manganese ions, namely
the surrounding oxygen octahedra (see Fig. 3). At every
site two optical phonon modes of Eg symmetry, qθ and

Fig. 3. Distortions of the oxygen octahedra for the Jahn-Teller
(qθ, qε) and the breathing-type (qa1) phonon modes.

qε, couple to the orbital degree of freedom of the eg elec-
trons. In addition, a breathing-mode qa1 is sensitive to
the electronic density. To lowest order in the elongations
qα = b†α + bα (α ∈ {θ, ε, a1}) this is modelled by the E⊗ e
Jahn-Teller Hamiltonian [24]

HJT = g
∑

i

[
(ni,ε − ni,θ)(b

†
i,θ + bi,θ)

+ (d†i,θdi,ε + d†i,εdi,θ)(b
†
i,ε + bi,ε)

]
(9)

and a Holstein-type [25] interaction

Hbr = g̃
∑

i

(ni,θ + ni,ε − 2ni,θni,ε)(b
†
i,a1

+ bi,a1
) . (10)

The bosonic operators bi,α describe the usual harmonic
lattice dynamics,

Hph = ω
∑

i

[
b†i,θbi,θ + b†i,εbi,ε

]
+ ω̃

∑
i

b†i,a1
bi,a1

, (11)

where we assume these phonons to be dispersion-less. At
first glance the local structure of the electron-phonon in-
teraction described by equations (9) to (11) does not
seem to cover orbital-orbital interactions which are re-
lated to the displacement of intermediate oxygen ions.
Inspection of the collective modes of the system shows,
however, that the corresponding vibrations of the oxygen
ions are of course present in our model. Consequently –
as will become evident from the numeric data – this type
of electron-phonon interaction causes an effective orbital-
orbital interaction between neighbouring sites.

In experiments [26,27] the vibrational modes involving
distortions of the oxygen octahedra are found to have fre-
quencies of the order of 50 to 80 meV. For our calculations
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Fig. 4. Spatial symmetries of the considered cluster.

we assume g = g̃ and ω = ω̃ in addition to the neglected
phonon dispersion. Apart from reducing the number of
model parameters these approximations are reasonable,
since we study a small finite system and are mainly inter-
ested in qualitative features of the electron-lattice inter-
action.

3 Numerical results

The Hilbert space of the complete microscopic model,

H = Hel +HJT +Hbr +Hph, (12)

is large and grows rapidly with the system size. However,
using a density matrix based optimisation procedure [28]
for the phonon subsystem we are able to retain the full
quantum dynamics of the lattice and the electronic sub-
system in our numerical calculation [29] of the ground-
state properties. In addition we take into account some of
the discrete symmetries of the model, namely the conser-
vation of the Sz component of the spin, the particle num-
ber conservation, and the mirror symmetries orthogonal
to the x and y axes (dot-dashed in Fig. 4). Nevertheless,
the typical dimension of the eigenvalue problem is of the
order of 106 and its repeated solution during the phonon
optimisation requires the use of large scale computers.

3.1 Undoped manganites

The undoped manganese oxides (LaMnO3, PrMnO3) usu-
ally exhibit A-type anti-ferromagnetic order and strong
Jahn-Teller distortion of the ideal perovskite struc-
ture [30,31]. The origin of the observed magnetic order has
been subject to discussions. While different band structure
calculations [32–35] emphasise the importance of lattice
distortions for the stability of anti-ferromagnetism, Feiner
and Oleś [14] favoured a purely electronic mechanism.

Our calculation points out that both parameters, U/Jh

and g, can drive a transition from ferromagnetic (FM)
to anti-ferromagnetic (AFM) order. Figure 5c shows the
phase diagram of the electronic model without electron-
phonon interaction, i.e., g = 0. We assume t = 0.4 eV and
t/tπ = 3 for the hopping integrals [14] and characterise

 

Fig. 5. Left: Total spin Stot and orbital order (∝ 〈nθ − nε〉)
of the ground-state of the cluster in dependence on (a) the
electron-phonon coupling g, and (b) the Coulomb interac-
tion U . Right: Phase diagram of the electronic model without
electron-phonon interaction (g = 0).

 

Fig. 6. Orbital-exchange (panels (a) and (b)) and spin-orbital
(panels (c) and (d)) correlations between nearest and next-
nearest neighbouring sites at variable electron-phonon cou-
pling g and Coulomb interaction U .

the magnetic phases according to the total spin Stot of
the ground-state of the four site cluster. Parameters in the
range U ≤ 5Jh implicate that for two neighbouring sites
a d5d3 configuration becomes the ground-state in favour
of the d4(5E)d4(5E) configuration. This is incompatible
with the situation in the manganites and consequently
the electronic Hamiltonian Hel is not applicable for these
values of U and Jh. Starting from the FM phase with
5Jh ≤ U � 9.2Jh both, increasing U or g, change the mag-
netic order of the ground-state to AFM (Fig. 5a and b).
The magnetic transition is accompanied by a change in
the corresponding orbital order, which we identify by the
local expectation value 〈nθ −nε〉 and the orbital exchange
correlation 〈σiσi+δ〉 between neighbouring sites. Here the
Pauli matrices (σδ

i )µν operate on the orbital degree of free-
dom, µ, ν ∈ {θ, ε}, at the site i. The panels (a) and (b) of
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Fig. 7. Behaviour of the lattice with increasing electron-
phonon coupling g: (a) expectation value, and (b) fluctuation
of the bond lengths qδ; (c) and (d) correlations of the Jahn-
Teller modes qθ and qε between different sites.

the Figures 5 and 6 illustrate the transition from staggered
to uniform orbital order.

In view of the distinct driving interactions (U or g)
both transitions appear to be very similar. However,
we observe a significant difference, if we study the
(de)coupling of spin and orbital degrees of freedom. The
latter has been a rather controversial issue in the case of
the Kugel-Khomskii model [36],

H = J
∑
〈ij〉δ

[
4(SiSj)

(
τδ
i +

1
2

) (
τδ
j +

1
2

)

+
(
τδ
i − 1

2

) (
τδ
j − 1

2

)
− 1

]
, (13)

which contains the same kind of spin-orbital interactions
SiSj τ

δ
i τ

δ
j as our Hamiltonian. Using equation of motion

approaches for the approximate solution of the model (13)
Khaliullin and Oudovenko [37] decoupled spin and orbital
degrees of freedom, while Feiner et al. [38] emphasised the
role of mixed spin-and-orbital excitations. A correlation
function, which makes it possible to distinguish between
these two decoupling schemes, is the spin-orbital fluctua-
tion 〈SiSi+δ τ

δ
i τ

δ
i+δ〉 − 〈SiSi+δ〉〈τδ

i τ
δ
i+δ〉. The data we cal-

culated for the complete manganite model (12) is given
in Figures 6c and d. It indicates that this correlation is
smaller by a factor of 3 to 5 if phonons are responsible
for the FM to AFM transition (open symbols). On the
other hand, starting within the AFM phase increasing
electron-phonon interaction clearly suppresses the spin-
orbital-fluctuation (Fig. 6c, bold symbols). This behaviour
is, of course, crucial for effective theories that are based
on such decoupling schemes.

To characterise the behaviour of the lattice we calcu-
late the correlations 〈qi,αqj,α〉 (α ∈ {θ, ε}) between the
elongations of the Jahn-Teller modes qθ and qε at neigh-

Fig. 8. Evolution of lattice, spin and orbital correlations with
increasing electron-phonon coupling g at doping x = 0.

bouring sites i, j. The bond lengths


qxqy
qz


 =




1√
6

− 1√
2
− 1√

3
1√
6

1√
2

− 1√
3

− 2√
6

0 − 1√
3


 ·


 qθ
qε
qa1


 (14)

define additional significant quantities. In particular we
considered the expectation values 〈qi,δ〉 and 〈q2i,δ〉−〈qi,δ〉2
with δ ∈ {x, y, z}. Figure 7 shows that within the FM do-
main the lattice is undistorted but the qε vibrations are
correlated along the (π, π) direction in reciprocal space.
At intermediate values of g/ω ≈ 1 a finite x-y-distortion
develops, which is also reflected in spin and orbital cor-
relations (e.g., the spin-orbital fluctuation in Figure 6c).
Such type of asymmetry seems surprising in view of the in-
variance of the cluster with respect to diagonal reflections
(dot-dot-dashed in Fig. 4). However, since this symmetry
is not taken into account in the calculation the system is
trapped in one particular linear combination of two de-
generate ground-states and different expectation values in
x and y direction can evolve. At larger electron-phonon
coupling g only a finite qθ distortion remains and the qε
modes are uncorrelated.

In Figure 8 the change of orbital, spin and phonon cor-
relations with increasing g is shown schematically. This,
however, is a rather suggestive picture, which can not
cover all the details of the various correlations. To select
the appropriate graphical representation for the orbital
arrangement we study the E ⊗ E-eigenstates of reduced
orbital density matrices. On a bond 〈ij〉 these states are
either anti-symmetric,

|a〉ij ∝ (|θ〉i ⊗ |ε〉j − |ε〉i ⊗ |θ〉j) , (15)

or symmetric,

|s(ϕ, ψ)〉ij ∝ (|ϕ〉i ⊗ |ψ〉j + |ψ〉i ⊗ |ϕ〉j) , (16)

with respect to the permutation of two sites. The angles
ϕ, ψ ∈ C parameterise two generalised orbital states of
the form |ϕ〉 = cos(ϕ)|θ〉 + sin(ϕ)|ε〉. At small g the stag-
gered orbital order implies that the anti-symmetric orbital
state is the most probable for each bond, i.e., it belongs to
the largest eigenvalue of the density matrix. Since an anti-
symmetric combination of two arbitrary generalised states
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Fig. 9. Doping x = 0.25: (a) Total spin and kinetic energy vs.
g; (b) generalised orbital states |ϕ〉 surrounding empty sites;
(c) and (d) expectation value 〈qδ〉 and fluctuation 〈q2

δ〉 − 〈qδ〉2
of the bond length in x and y direction.

|ϕ〉 and |ψ〉 is always proportional to |a〉ij the graphical
representation remains undefined. Therefore we took into
account also the second eigenstate of the density matrix,
which is slightly less probable but necessarily symmetric.
The associated angles ϕ and ψ define the orbital pattern
shown in the left hand panel of Figure 8. For larger g
the uniform orbital order allows for a calculation of the
depicted orbital pattern directly from the most probable
eigenstate of the density matrix. The spin arrangements
are chosen such as to reflect the expectation values of
the Heisenberg interaction, 〈SiSj〉, for nearest neighbour
bonds 〈ij〉. Of course, the calculated ordering patterns can
not be directly compared to experimental observations for
the three dimensional compounds. Nevertheless, the or-
bital arrangement within the FM spin background closely
resembles the data measured within the FM planes of the
A-type AFM structure [39].

3.2 Doping x = 0.25

In view of the CMR effect the domain of low to inter-
mediate doping (0.15 ≤ x ≤ 0.5) is certainly the most
interesting one. Here ferromagnetism is stabilised by the
double exchange interaction, which depends on the mobil-
ity of the charge carriers. However, if too strong electron-
phonon coupling causes localisation of the holes, the spin
order breaks down. For x = 0.25 our calculation of the
ground-state properties clearly illustrates this coincidence.
Figure 9a shows the total spin Stot of the cluster together
with the expectation value of the kinetic energy in the
ground state,

Ekin =

〈
− t

5

∑
i,δ,σ

Rδ

[
ai,σa

†
j,σ d

†
i,θni,εdj,θnj,ε

]
+ h.c.

〉
·

(17)

Obviously, the change from FM to AFM spin correlations
with increasing electron-phonon interaction g is directly

Fig. 10. Evolution of lattice, spin and orbital correlations with
increasing electron-phonon coupling g at doping x = 0.25.

related to the charge mobility. In addition the transition
is accompanied by the appearance of a lattice distortion
in the x-y-plane (see Fig. 9c), which is interesting also in
view of the lattice dynamics. Whereas one of the elonga-
tions, 〈qy〉, grows linearly in g, the associated fluctuation
〈q2y〉 − 〈qy〉2 shows a kink near the FM to AFM transition
point. This behaviour closely reminds the data collected
by Booth et al. [40] using X-ray-absorption fine-structure
measurements (XAFS). For La1−xCaxMnO3 these au-
thors observed a similar rise in the Mn-O bond length
variance σ2 near the critical temperature of the transi-
tion from the ferromagnetic metallic to the paramagnetic
insulating phase.

Orbital correlations are again extracted from the eigen-
states of the reduced density matrices for a single bond.
We concentrate on the environment of a hole, which is
characterised by the E⊗A2 eigenstates, i.e., by states de-
scribing a Mn3+ site neighbouring a Mn4+ site. Each of
these states can be understood as the product |ϕ〉i ⊗|a2〉j
of a generalised orbital state |ϕ〉 and the basis state |a2〉
(see Eq. (2)). In Figure 9b the corresponding angle ϕ of the
most probable eigenstate of the density matrix is given for
bonds in x and y direction. The data for weak and strong
electron-phonon coupling g is translated into the orbital
arrangement presented in Figure 10. Increasing g reduces
nearest-neighbour correlations and forces the orbital order
to depend locally on the dominant electron-phonon inter-
action. The orbital polaron [41] pattern disappears, if the
charge carrier is trapped completely.

3.3 Doping x = 0.5

At doping x = 0.5 the picture is more involved. Again
we consider model parameters, which yield ferromagnetic
spin correlations for vanishing electron-phonon coupling,
g = 0. The strong Coulomb interaction U then leads to
the formation of a charge density wave with ordering vec-
tor (π, π) in reciprocal space. Increasing electron-phonon
coupling g amplifies this trend, and at large g the trapping
of the carriers gives rise to charge order. In Figure 11c this
is illustrated with the density-density correlation between
different lattice sites i and j. From the model Hamilto-
nian (8) it is obvious that if charges tend to maximise
their mutual distance the particular anti-ferromagnetic
component of the Heisenberg spin interaction, which is
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Fig. 11. Doping x = 0.5: (a) Total spin and kinetic energy
vs. g; (b) complex orbital states on diagonal bonds; (c) density-
density correlations; (d) lattice distortion 〈qδ〉 in x and y di-
rection.

proportional to t2/Jh, gains importance. Consequently
FM order is unstable at much lower g, if compared to
the case x = 0.25. The FM to AFM transition is not con-
nected to charge localisation and causes only a tiny jump
of the kinetic energy (see Fig. 11a).

The calculated orbital correlations are interesting as
well. On a diagonal bond the most probable E ⊗ E-
eigenstate of the reduced orbital density matrix is sym-
metric for all considered values of g, |s(ϕ, ψ)〉. Note how-
ever, that the associated angles are complex conjugated
ϕ = ψ∗ ∈ C within both the FM and parts of the AFM
phase (see Fig. 11b). This result reminds of some recent
mean-field studies [42–45], which obtain different patterns
of complex orbital ordering, in particular within the fer-
romagnetic conducting phase. Of course, our exact data
for a finite cluster does not relate to any complex long
range order. It shows, however, that complex linear com-
binations of the states |θ〉 and |ε〉 could be the appropriate
choice for an approximate description of the complicated
orbital correlations observed within the metallic phase of
the manganites. As soon as a large electron phonon cou-
pling g causes charge localisation real orbital states are
again favourable (cf. Fig. 11b).

In Figure 12 we summarise the behaviour of the lat-
tice, the spins and the orbitals. With growing g the cluster
expands isotropically until a finite x-y-distortion develops
at the FM to AFM transition (see also Figure 11d). Fur-
ther increase of g causes the carriers to localise and the
distortion to disappear. The spin background undergoes a
change from FM order to different types of AFM order. Of
course, within the four site system we are not able to de-
tect more complicated spin arrangements like the CE-type
order observed experimentally [30]. However, the sensitiv-
ity of the system to small changes in the model parameters
is clearly visible. Note that the depicted orbitals represent
the amplitude of the underlying complex states |ϕ〉·

Fig. 12. Evolution of lattice, spin and orbital correlations with
increasing electron-phonon coupling g at doping x = 0.5.

4 Conclusion

In the present work we have derived a microscopic model
for doped CMR manganites which includes the dynam-
ics of charge, spin, orbital, and lattice degrees of freedom
on a quantum mechanical level. Using exact diagonalisa-
tion techniques we have studied how the electron-lattice
interaction affects short range spin and orbital correla-
tions. An observation, which is important for the under-
standing of the undoped compounds, is the suppression of
the spin-orbital coupling with increasing electron-phonon
interaction. For the weakly doped compounds we have
demonstrated the direct relationship between the trapping
of charge carriers and the breakdown of ferromagnetism.
In addition, we have shown that changes in the spin cor-
relations are reflected in dynamic lattice correlations. At
intermediate doping we find that the system depends on
a subtle balance of double-exchange, superexchange and
electron-lattice interaction. The latter enhances the ten-
dency for charge ordering which in turn affects spin and
orbital order. Besides the calculation proves that complex
orbital states can be a suitable approximation for the de-
scription of orbital correlations. Although the calculated
data is not quantitatively comparable to real, three di-
mensional materials, the exact diagonalisation of even a
small system provides detailed insight into correlations
and driving interactions behind the rich phase diagram
of the manganites. In addition, the exact results may sup-
port the development of approximate theories.
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